SIAM J. COMPUT. © 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 5, pp. 1521-1549

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS
OF GRAPHS II*

HAN LA POUTRE!

Abstract. Data structures and algorithms are presented to efficiently maintain the 2- and 3-
edge-connected components of a general graph, under insertions of edges and nodes in the graph.
At any moment, the data structure can answer whether two nodes are 2- or 3-edge-connected. The
algorithms run in O(n+m.a(m,n)) time, where m is the total number of queries and edge insertions.
Furthermore, a linear-time algorithm is presented for maintaining the 2-edge-connected components
in case the initial graph is connected. Finally, a new solution is presented for the 2-vertex-connected
components of a graph.

Key words. analysis of algorithms, dynamic data structures, edge connectivity, vertex connec-
tivity

AMS subject classifications. 68P05, 68Q20, 68R10

PII. S0097539793257770

1. Introduction. A graph algorithm is called dynamic if it maintains some
information related to a graph while the graph is being changed. Dynamic algorithms
are known for several graph problems. Examples are, e.g., maintenance of transitive
closures [16, 17, 18, 27], minimal spanning trees [7, 8], planarity testing [3, 4, 6, 25, 33],
shortest paths [1, 2, 29], k-connectivity [4, 5, 8, 9, 14, 21, 23, 24, 28, 32, 34, 35], and
nearest common ancestors in trees [12].

The general problem of maintaining the k-edge- or k-vertex-connected compo-
nents of a graph (k > 1) starts with an “empty” graph of n nodes® (i.e., a graph
with no edges) and allows subsequent edge insertions and queries that ask whether
two nodes are k-edge/vertex-connected.? For these problems, a lower bound of
Q(n + m.a(m,n)) [32] exists,> which is induced by lower bounds for set merging
algorithms [10, 20]. Here m is the number of insertions and queries. So it is impor-
tant to know whether there exist algorithms that actually run in this time. For k = 2,
Westbrook and Tarjan [32] obtained the optimal running time of O(n + m.a(m,n)).
For 3-edge-connectivity, however, only combinatorial and special-case results exist.
In our companion paper [21], we developed combinatorial and special-case results for
2- and 3-edge-connectivity; we will further use these in this paper. These special-
case results concern maintaining the 3-edge-connectivity relation in 2-edge-connected
graphs and give an implementation in O((n + m).a(m,n)) time. In [14], Galil and
Italiano obtained comparable results with this complexity for maintaining the 3-edge-
connectivity relation in connected graphs.

*Received by the editors October 27, 1993; accepted for publication (in revised form) October 4,
1996; published electronically March 15, 2000. This work was done when the author was a researcher
at Utrecht University and Leiden University, The Netherlands. The work was partially supported by
the ESPRIT Basic Research Actions 3075 and 7141 of the EC, and partially by the Royal Netherlands
Academy of Sciences and Arts (KNAW). Earlier versions of this paper occurred in Tech. report RUU-
(8-90-27, Utrecht University, 1990; Dynamic Graph Algorithms and Data Structures, Ph.D. thesis,
Utrecht University, The Netherlands, 1991.

http://www.siam.org/journals/sicomp/29-5/25777.html

TCWI (Centre for Mathematics and Computer Science), Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands (hlp@cwi.nl).

!In this paper, n is the number of nodes.
2For definitions, see subsection 2.5.
3a(m, n) is the inverse Ackermann function.

1521

1522 HAN LA POUTRE

Although [21] presents a solution for 3-edge-conmectivity which works in time
O(nlogn +m), it still leaves the problem whether the a-bound is achievable for the
general case. The general problem appears to be substantially more difficult than the
special-case problems, which can make use of the preset combinatorial structure of
the special graphs. This is also sustained by a coresult of this paper, which shows that
maintaining 2-edge-connected components in connected graphs can be done in linear
time, while in general graphs this cannot. Therefore, the important issue remains
whether the (actually more involved) 3-edge-connectivity relation can be maintained
within the a-bound.

The main objectives of this paper are presenting algorithms and data structures
that maintain the 3-edge-connectivity relation in general graphs with a running time
of O{n + m.a(m,n)). To achieve this, we develop extended combinatorial structures
(augmented cycle forests and basic cluster trees), and we present new data structures
(fractionally rooted trees). We thus construct a solution consisting of different data
structure layers to maintain the 3-edge-connectivity relation. For practical applica-
tions, however, the structures seem very well suited for implementation. Furthermore,
we also present a linear-time solution for maintaining 2-edge-connected components
in connected graphs. Since there is a nonlinear lower bound of Q(n + m.a(m,n))
for maintaining 2-vertez-connectivity in connected graphs, this seems to be the first
result that reveals a difference in computational complexity between 2-edge- and 2-
vertex-connectivity. Finally, we also give new solutions* for maintaining the 2-edge-
and 2-vertex-counected components of a graph, which also makes use of the above
data structures and with a similar running time of O(n+m.a(m, n)). This integrates
the approaches for 2- and 3-edge-connectivity and also connects those for 2- and 3-
vertex-connectivity (see [24]). We remark that all our results allow the insertion of
nodes as well.

The paper is organized as follows. Section 2 contains the preliminaries. In sec-
tion 3, the specifications of the operations on a new data structure, called fractionally
rooted trees, are given. In section 4, the maintenance of 2-edge-connected compo-
nents is considered, including the special case for connected graphs. In section 5-7,
the fractionally rooted tree is presented. To be precise, observations and ideas are
given in section 5; the building elements for fractionally rooted trees, called division
trees, are described in section 6; and the fractionally rooted trees themselves are pre-
sented in section 7. Their complexity is considered in section 8. The final results for
fractionally rooted trees are in section 9. In section 10, the optimal solution for main-
taining the 3-edge-connected components is presented. Furthermore, in section 11,
the maintenance of 2-vertex-connected components is briefly considered. Finally, sec-
tion 12 contains concluding remarks. Readers interested in the main outlines of the
paper can skip sections 6.2, 8.1, and 9 (except for the theorems in section 9). Readers
interested in 3-edge-connectivity only can skip subsection 4.2.

2. Preliminaries.

2.1. Graphs and terminology. Let G = (V, E) be an undirected graph with
V the set of vertices and E the set of edges. We denote an edge as a triple (e, z,y),
where e is a unique edge name and z and y are the end nodes of the edge. A graph is
called empty if it consists of nodes without edges. We use the standard terminology
(see also [15]). A path is simple if no node occurs twice in it. Two paths are called
edge disjoint if they do not have a common edge. Two (different) paths are called

4Obtained independently from [32].

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1523

vertex disjoint if they do not have a common vertex except for their end vertices. Two
nodes are called connected if there exists a path between them. An (elementary) cycle
is a path of which the end nodes are equal and in which no edge occurs twice. A cycle
is simple if no node occurs twice except for the end nodes.

We extend the terminology. Consider a tree T. A set of nodes of T induces a
subtree of T if these nodes are the nodes of a subtree of T'; this is similar for a set of
edges. Suppose the vertex set of T is partitioned into disjoint subsets, where each set
induces a subtree of T'. Let each induced subtree of T' be contracted to a new node,
called contraction node. For an edge (e,z,y), where z and y are contracted to p and
g, p # g, the edge (e, p,q) is called the contraction (edge) of (e,x,y), and (e, z,y) is
called the original of (e,p,q). (Both edges are given the same name.)

The tree C'T consisting of the contraction nodes and the contraction edges is
called a contraction tree of T. For a class D of edges in T, the class of edges in CT
inherited from D consists of the contractions of edges in D. When we consider classes
of nodes in a graph, we often refer to a class that is represented by a node ¢ by “class
¢.” A singleton class, set, or tree is a class, set, or tree that consists of one element or
node, respectively. For a set or list L, |L| denotes the number of elements in L. (If
a sublist is attached to each element in L, then these sublists are not considered for
IL].)

Consider a tree T that is rooted at node 7. (This just means that node r is a
distinguished node.) The father node of an edge is the end node of the edge that
is closest to the root. Then father edge of a node = is the edge between = and the
father node of . The father edge of an edge is the father edge of the father node of
that edge. For a subtree S of T, the mazimal node of that subtree is the (unique)
node that is nearest to the root. We call an edge of subtree S a mazimal edge if it is
incident with the maximal node of S.

2.2. Connectivity. Two nodes r and y are k-edge-connected (k > 1) iff there
exist k edge-disjoint paths between x and y, and z and y are k-vertez-connected iff
there exist k different vertex-disjoint paths between z and y (Menger; see [26]). It is
well known that k-edge-connectivity is an equivalence relation on the set of nodes of
a graph.

Henceforth, we will usually call an equivalence class for 2-edge-connectivity a
2ec-class, and an equivalence class for 3-edge-connectivity a 3ec-class. The 2-edge-
connected components of a graph G = (V, E) are the subgraphs of G' that are induced
by the 2ec-classes, i.e., subgraph (C, {(e,z,y) € E|z,y € C}) for each 2ec-class C.

LEMMA 2.1 (see [21]). Let G = (V,E) be a graph. Let H be a 2-edge-connected
component of G. Then H is a 2-edge-connected graph. Moreover, nodes x,y € H are
k-edge-connected in H iff they are k-edge-connected in G (k > 1).

The notion of a 3-edge-connected component can be defined such that Lemma 2.1
holds for 3-edge-connectivity too. We refer to [21]. In our observations, we will
represent the 2ec-classes and the 3ec-classes of a graph by means of a “super” graph.
To this end, we use the notion of a class node, which is a new node (or “name”) that
represents a class.

LEMMA 2.2 (see [21]). Let G = (V,E) be a graph and let k > 1. Let V be
partitioned into classes, where any two nodes in the same class are k-edge-connected.
Let a new class node be related to each class. Let k' satisfy 1 < k' < k. Then two nodes
are k' -edge-connected in G iff the class nodes of their classes are k'-edge-connected in
the graph obtained from G by contracting each class to its class node.

We call a set S of at least two nodes a 2vc-class if the nodes are 2-vertex-

1524 HAN LA POUTRE

connected, and if there does not exist a node outside S that is 2-vertex-connected
with the nodes of S (i.e., the class is maximal). Furthermore we define a quasi class to
be any set of two nodes that are the end nodes of a cut edge. The 2-vertez-connected
components of a graph G are the subgraphs of G that are induced by the 2vc-classes
of nodes. (Note that the 2-vertex-connected components and the subgraphs induced
by quasi classes as we defined them are usually called the blocks of a graph.)

In the sequel, we will often denote 2-edge-connectivity by “2ec-,” etc., when
we consider components or relations. For example, 3ec-components denotes 3-edge-
connected components, and 2vc-relation denotes 2-vertex-connectivity relation.

2.3. Problem description. The problems that we consider in this paper are
as follows. Let a graph be given. Then the following operations may be applied on
the graph.

wnsert((e, z,y)). Insert the edge (e,z,y) in the graph.

2ec-comp(z). Output the name of the 2ec-component (2ec-class) which contains
z.

3ec-comp(z). Output the name of the 3ec-component (3ec-class) which contains
z.

Is2vc(z,y). Output whether = and y are two nodes in the graph that are 2-vertex-
connected and output the name of the 2vc-component (2ve-class) in which they both
are contained (if any).

We call a problem the 2ec-problem if operations insert and 2ec-comp are consid-
ered; the 3ec-problem if operations insert, 2ec-comp, and 3ec-comp are considered;
and the 2vc-problem if operations insert and Is2vc are considered. In these problems,
we normally start with an empty graph with n nodes (unless stated otherwise). In
addition, the above collection of operations can be extended with the insertion of a
new (isolated) node in the graph. We will consider this operation only in the last
steps of our solutions.

We call the insertion of an edge an essential insertion for a given problem, if in
the graph either the connectivity relation changes or, for the 2ec-problem, the 2ec-
relation changes, or, for the 3ec-problem, the 2ec- or 3ec-relation changes, or, for the
2vc-problem, the 2ve-relation changes. An insertion is called nonessential otherwise.
Note that nonessential insertions can be omitted, which is known after a proper couple
of queries. (Thus such an insertion does not need to take more than the time for those
queries.)

2.4. The Ackermann function. The Ackermann function A is defined as fol-
lows. For ¢,z > 0 function A is given by

A(0,z) = 2z for x > 0,
(1) A(1,0) = 1 fori>1,
A(i,z) = A(-1,A@,z-1) fori>1, z>1.

The row inverse a of A and the functional inverse o of A are defined in corre-
spondence to [11, 12, 19, 23] by

(2) a(i,n) = min{z >0|A({,z) >n} (>0, n>0),
(3) a(m,n) =min{i > 1la(i,n) < 4.[m/n]} (m >0, n>1).

Here we take [0] = 1. For more technical insight on these functions, we refer to [19].
Here we quote that

(4) a(t, A(i,z)) =2 (1>0, z>0),

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1525

and also that for any practical n, we have a(m,n) < 3. Also, A(i,1) = 2 and

2 z 2s
A(4,2) = 4 (i > 0), and A(0,z) = 2z, A(L,z) = 2%, and A(2,z)=22" } .

Similarly we have

a(0,n) =[],

a(ln) = fogn] = mingji[2] =1},
a(2,n) = log"'n = min{j”log(]’)n]:l},
a(3,n) = min{j| log*m n =1},

where the superscript (j) denotes the j consecutive applications. For simplicity, we
extend the Ackermann function by A(i,—1) =0 for all ¢ > 0.

2.5. Representation and data structures. The algorithms and data struc-
tures that we present (except for the algorithm in subsection 4.2) can be implemented
on both a pointer machine and a random access machine (RAM) with the same com-
plexity. Nodes and edges of a graph are represented in memory by records, which
we will consider to be the actual nodes and edges. Each vertex has an incidence list
consisting of pointers to the incident edges. Also, each edge contains pointers to its
two end nodes. If we consider a tree T rooted at some node 7, then for each node in
T, its father node and father edge are related to it by appropriate pointers. An edge
that has to be inserted is given by its record with the pointers to its end nodes as
input for the algorithms.

In the following, the Union-Find structure is used to maintain the equivalence
classes for connectivity, 2-edge-, and 3-edge-connectivity. These structures are de-
noted by UF,, UFs., and U Fjse., respectively, where the corresponding Finds on
elements x are denoted by c(z), 2ec(z), and 3ec(z), respectively. Many solutions
have been proposed for the Union-Find problem [19, 30, 31]: these solutions all take
O(n + m.a(m,n)) time for all Unions and m Finds on n elements, which is optimal
[10, 20]. The solution of [19] ensures that, in addition, the fth Find can be done in
O(a(f,n)) worst-case time. We call such structures a-UF structures. In this paper,
we will also make use of a class of structures UF () (¢ > 1), as defined in [19].

THEOREM 2.3 (see [19]). Structure UF(i) takes O(n.a(¢,n)) time for all Unions
on n elements, where a Find takes O(i) worst-case time (i > 1).

We consider the connectivity problem for edge insertions. Let G = (V, E) be a
graph. Suppose a sequence of edge insertions in G and queries about whether two
nodes are connected are performed. If an edge (e, z,y) is inserted, there are two cases.
If ¢(x) = c(y), then nothing needs to be done. Otherwise, if ¢(x) # ¢(y), then x and
y are not connected yet and the equivalence classes c(z) and ¢(y) are joined. Since
apart from these Unions, each insertion takes O(1) time, it follows that all insertions
and queries can be performed in O(|E]) time plus the time needed for the Union and
Find operations. In the sequel, we use this algorithm for maintaining connectivity,
but we will not make the above computations explicit any more.

3. Fractionally rooted trees: Concept and operations. We give a formal
description of the operations supported by the data structure called fractionally rooted
tree, without considering the data structure itself yet. Let a forest F' be given. Suppose
the collection of edges is partitioned into disjoint classes such that each class induces
some subtree of F. Such a partition is called an admissible partition.

1526 HAN LA POUTRE

We first define some notions. Let x and y be two nodes in the same tree of F', and
let P be the tree path between x and y. By “edge classes on P,” we mean the edge
classes of which an edge is on P. An edge class is incident with node x if it contains
an edge with z as end node. We call a node z on P a boundary node of P if it is
incident with two classes on P or if it is one of the end nodes of P. We call a node
of P an internal node otherwise. A boundary edge set for a boundary node z on P is
a set of (0, 1, or 2) edges incident with z: one from each class that is incident with z
and that is on P. (See Figure 1, where path P is drawn with heavy lines, C; and C2
are two different edge classes, {e1,e2} C C7 and {es, es} C Cy, and where {e1,es},
{e1,es}, {es,e3}, and {e2,es} are the possible boundary edge sets for z on P.) A
boundary list for the two nodes x and y is a list consisting of the boundary nodes of
P, where each boundary node has a sublist that contains a boundary edge set for it
on P. (Note that in a boundary list for x and y with z # y, all nodes have a sublist
with two edges except for nodes z and y that each have one edge in their sublist.) We
say that x and y are related nodes, denoted by z ~ y, if z = y or if all the edges on P
are in the same edge class. (Hence x ~ y iff = and y are the only nodes in a boundary
list for z and y.)

F1G. 1. Boundary edge sets.

We say that an edge class occurs in a list consisting of sublists of edges if an edge
of it occurs in some sublist. A joining list J is a list of nodes with sublists of edges
such that the union of the classes occurring in J induces some subtree in F. (Hence
it yields a new admissible partition of the edge set.) In addition, the nodes in J must
be the nodes incident with at least two classes occurring in .J, and the sublist for each
node contains an edge for each class in J incident with the node.

The following operations, called FRT operations, may be performed on a forest
F.

link((e,z,y)). Let z and y be nodes in different trees of forest F. Then link the
two trees containing z and y by inserting the edge (e, z,y), where (e,x,y) forms a
new singleton class.

boundary(x,y). Let x and y be in the same tree of F' with 2 # y. Then output a
boundary list for z and y.

Joinclasses(J). Let J be a joining list. Then join all the edge classes of which an
edge occurs in the list.

candidates(z,y). Return an edge incident with and return an edge incident with
y; these edges (the candidates) are in the same class if such edges exist (i.e., z ~ y).
Return the names of the edge classes in which the edges are contained.

Finally, we define some notions that will be used in the sequel. We say that

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1527

a call boundary(z,y) is essential if =(z ~ y) and it is nonessential if z ~ y. An
essential sequence is a sequence of link, boundary, and joinclasses, where every call
of boundary is essential and is followed by a call joinclasses(J) such that all the edge
classes occurring in the output of boundary also occur in J. A matching sequence is
a sequence of F'RT-operations where the subsequence of calls of link, essential calls
of boundary, and calls of joinclasses forms an essential sequence.

4. Two-edge-connectivity. In this section, we consider the problem of main-
taining the 2ec-components in a graph, and we will present algorithms that run in
O(n + m.a(m,n)) time for n nodes and m queries and insertions using fractionally
rooted trees. Thus we present a solution that is different from that given in [32] but
whose approach is closer to the approach for maintaining the 3ec-relation in general
graphs (section 10), and that we will use there too. We also present a linear-time
solution for maintaining the 2ec-components in case the initial graph is connected.

4.1. Graph observations. In this subsection, we recall from the companion
paper [21] the observations for inserting edges in a graph G = (V, E). The set V can
be partitioned into equivalence classes for 2-edge-connectivity: the 2ec-classes. Let
each 2ec-class C be represented by a new (distinct) node ¢, called the class node of
C. Let 2ec(x) be the class node of the 2ec-class in which the node x is contained. We
define the contracted graph 2ec(G) as follows:

2ec(G) = (2ec(V), {(e,2ec(x), 2ec(y))|(e, z,y) € E A 2ec(z) # 2ec(y)}).

For example, 2ec(G) is the graph that is obtained if we contract each 2ec-class into
one class node. By Lemma 2.2, 2ec(G) is a forest (for a figure, see [21]). An edge
(e,z,y) in G is called an interconnection edge between (classes) 2ec(z) and 2ec(y) if
2ec(x) # 2ec(y).

We consider the 2ec-relation under edge insertions by means of the graph 2ec(G).
Suppose a new edge (e,z,y) € E is inserted in graph G = (V, E). We distinguish
three cases and apply Lemma 2.2.

1. ¢(z) # c(y). Then (e, 2ec(x),2ec(y)) connects two trees in 2ec(G) that have
to be joined into one tree.

2. 2ec(x) # 2ec(y) A c(x) = c(y). Then edge (e, 2ec(x),2ec(y)) connects 2ec(x)
and 2ec(y) in a tree of 2ec(G), and all class nodes on the tree path P from
2ec(x) to 2ec(y) become 2-edge-connected in 2ec(G). Thus all the classes
“on” P must be joined.

3. 2ec(x) = 2ec(y). Then nothing happens.

4.2. Algorithms for initially connected graphs. We consider the 2ec-problem
in case the initial graph is connected. We represent the graph 2ec(G) by means of
a spanning tree of G, denoted by ST(G). Note that a 2ec-class induces a subtree in
ST(G). Since the tree ST(G) can be constructed in advance, we can use the Union-
Find algorithms of [13] to maintain the 2-edge-connected classes: this algorithm runs
in O(n + m) time for m Finds for this special case. (It runs on a RAM but not on
a pointer machine.) Moreover, as remarked in [19], a Find can be performed in O(1)
worst-case time.

We give the algorithms in case the graph G initially is a tree. We implement the
tree as a rooted tree and initialize the Union-Find structure of [13] accordingly. We
recall from [13] that the name of a set in the Union-Find structure is the (unique)
node in the set that is closest to the root. Suppose an edge (e,x,y) is inserted. If
c(z) = c(y)A2ec(z) # 2ec(y), then the tree path between 2ec(x) and 2ec(y) is obtained

1528 HAN LA POUTRE

as in [21] by traversing the root paths of 2ec(z) and 2ec(y) in 2ec(G) stepwise in an
alternating way, where we use ST(G) with the Union-Find structure as representation
for 2ec(G). This is stopped if a class name top has been visited by both traversals;
path P between 2ec(z) and 2ec(x) consists of the two parts of these root paths up to
and including top.

We consider the time complexity. A computation of a tree path P is done in O(|P|)
time, since one of the two traversals contains nodes of P only. Since the number of
classes decreases by |P| — 1, all path computations take O(n) time altogether. All
Unions and m Finds take O(n+ m) time. Finally, each insertion takes two Finds and
O(1) time, apart from the above cost.

In case the initial graph is connected but it is not a tree, then we do the following.
First obtain a spanning tree of the graph, and initialize the structure for this tree.
Then insert the edges of the graph that are not in the tree by means of the above
algorithm. Then the actual insertions can be performed.

THEOREM 4.1. The 2ec-problem for graphs that are initially connected can be
solved such that a sequence of m insert operations takes O(n + m) time, where a
query takes O(1) time. The structure can be initialized O(ey) time and takes O(n)
space, where eq is the number of edges in the initial graph.

The above theorem can be augmented to allow attachment of a single new node
by an edge connecting it with an existing node in the graph, within the same time
complexity. (Thus, the graph remains connected.) This can be done by [13, section
3].

4.3. Algorithms and data structures for general graphs. In this subsec-
tion, we will give a solution for the general 2ec-problem with a time complexity of
O(n + m.a(m,n)) for n nodes and m queries and insertions.

We represent the structure 2ec(G) by means of a forest of spanning trees of G.
We denote the forest together with additional information (defined below) by SF(G).
SF(G) is augmented with edge classes induced by the 2ec-relation.

Let (e,z,y) be an edge in SF(G). If 2ec(z) = 2ec(y), then (e, x,vy)
is in the edge class named 2ec(x). Otherwise, edge (e,z,y) forms a
singleton class on its own, which we call a quasi class.
An edge class that is not a quasi class is called a real class. Note that interconnection
edges form quasi classes and vice versa.

As observed in subsection 4.2, a 2ec-class (of nodes) induces some subtree in
SF(G). Therefore, each edge class induces a subtree in SF(G). Also, if each subtree
in SF(G) induced by a real edge class is contracted to some node, then we obtain
the forest 2ec(G), where the quasi edge classes in SF(G) correspond to the edges in
2ec(G).

We consider the insertion of edge (e,z,y). If £ and y are in different trees of
SF(G), then these trees need to be linked. Now suppose z and y are in the same tree
T of SF(G). Let P be the tree path in T between z and y. We use the terminology
of section 3. By the definition of edge classes, a boundary node of P is either one of
the end nodes z or y, or it is a node for which its two neighbors on P are not both in
the same 2ec-class as itself. The two neighbors of an internal node z on P are inside
class 2ec(z) too. Therefore, if we compute the boundary nodes of P only, then we
obtain one or two nodes of each 2ec-class (of nodes) that need to be joined.

We need some tree representation to compute boundary sequences efficiently while
trees are linked from time to time. One solution is to use rooted trees and, in the
case of linkings of trees, to redirect the smallest one of the two trees that are linked.

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1529

However, this takes O(n.logn) for the linkings. To improve the time complexity, we
use the fractionally rooted trees (FRT) structure.

We solve the 2ec-problem by the so-called 2EC structure, which is given as follows.
We use the above forest SF(G) with the 2ec-classes and the above edge classes. A
node r in SF(G) that is not in a singleton 2ec-class has a pointer assoc to an edge
that is incident with = and that is in the class named 2ec(z). (Such an edge exists.)
We call such an edge an associated edge for x. Forest SF(G) is implemented as a
FRT structure, denoted by F RT5... Moreover, all 2ec-classes of nodes (in SF(G)) are
implemented by a Union-Find structure, denoted by U Fy... All connected components
of nodes are implemented by a Union-Find structure, denoted by UF,.

The initialization and the queries are straightforward. The insertion of edge
(e,z,y) in graph G is done by procedure inserts..((e,z,y)) as follows.

1. If e(x) # c(y), then link((e,z,y)) is performed, and the two connected com-
ponents ¢(x) and ¢(y) are joined (in UF,).

2. If e(z) = e(y) A 2ec(x) # 2ec(y), then the following is done. First, operation
boundary(z,y) is performed, returning boundary list BL. All the (node)
classes in which the boundary nodes are contained are joined in U Fs.. For
each node z in BL, the associated edge e of z (if any) is obtained. If edge e is
not in an edge class occurring in the sublist of z in BL, then e is inserted in
its sublist. (This ensures that 2ec(e) = 2ec(z) remains true after subsequent
joinings.) The end nodes of BL are removed in case their sublists contain
one edge only. Then, if BL # 0, operation joinclasses(BL) is performed.
Finally, for each node z in BL without an associated edge, an edge in its (old)
sublist is made its associated edge.

3. If 2ec(x) = 2ec(y), nothing is done.

Note that starting from a graph with n nodes, there are at most 2(n — 1) essential
insertions, since in each essential insertion at least two connected components or 2ec-
classes are joined.

OBSERVATION 4.2. In a 2EC structure, the time needed for a sequence of essential
insertions is linear to the time for a matching sequence of O(n) operations on n nodes
in FRTy.. and for O(n) Unions and Finds in UF, and UF5... Each nonessential
insertion takes time linear to 6(1) Finds in UF,. and U Fa,.

A 2EC(i) structure is the structure described above, where FRTs.. = FRT(i)
(see section 9), UFy.. = UF (i), and UF, = UF(i).

THEOREM 4.3. A 2EC(i) structure solves the 2ec-problem such that the total time
for all essential insertions is O(n.i.a(i,n)), where a query and a nonessential insertion
can be performed in O(i) time, and where the data structure can be initialized in O(n)
time and takes O(n) space (i > 1, n > 2).

Proof. Theorem 4.3 can be proved by Observation 4.2, Theorem 2.3, and Theo-
rem 9.1. d

We denote the Union-Find structures U Fy.. and UF, together by UF. We con-
sider the UF structures to be one structure on O(n) elements. Now take FRT(a(n, n))
as FRTy.. for a graph with n nodes, where a(n,n) is obtained as in [19], and take for
UF the o-UF structure (see subsection 2.5). Then we obtain the following.

THEOREM 4.4. The 2ec-problem can be solved such that the time is O(m.a(m,n))
in total (where m is the number of edge insertions and queries), where the fth query
takes O(a(f,n)) time. The data structure can be initialized in O(n) time and takes
O(n) space.

Proof. Each query and nonessential insertion corresponds to O(1) Finds in the

1530 HAN LA POUTRE

U F structures. Moreover, all essential insertions take at most O(n) Finds. Hence by
[19] the fth operation is performed in O(a(f,n)) time if it is a query or nonessential
insertion. The remaining statements follow by Theorem 9.1 (with n/ < min{2m,n}),
by (3), and by subsection 2.5. a

The above theorem can be augmented to allow insertion of new nodes in the
graph with a time complexity of O(n + m.a(m,n)): then o-FRT is used instead of
FRT (a(n,n)) (cf. section 9).

5. Fractionally rooted trees: Observations and ideas. We give some of
the ideas and observations regarding fractionally rooted trees. We consider a forest F,
with an admissible partition of the edge set (see section 3).

A tree T in F is partitioned into subtrees that all are (locally) rooted, i.e.; each
subtree has its own root independent of the remainder of the tree and subtrees. Each
subtree is contracted to a new node, which yields a contracted tree 7”. The collection
of edges of T" is partitioned into edge classes inherited from the edge classes of T'.

A boundary list B between two nodes and y in 7' can now be obtained as
follows. Let ¢ and d be the nodes in T” to which = and ¥y are contracted, respectively.
Suppose ¢ # d. Let P be the tree path between = and y in T. Let P’ be the tree
path between ¢ and d in 7'. Since an edge class induces a subtree, it follows that
each boundary node of P’ contains a boundary node of P, and the other way around.
For a boundary node b on P’, let P, be the part of P inside b, and let s and ¢ be
its end nodes. Then, obviously, for a node z ¢ {s,t} contained in b, z is a boundary
node of P, iff it is one of P. If we extend Py to Py, with the other edges e, and ¢
on P incident with s and ¢, respectively (if they exist), then it follows that a node
contained in b is a boundary node of Py iff it is one of P.

Now suppose that es exists. Then the boundary set for b contains an edge that
is in the same edge class as the contraction of e;. Let fs be the original of this edge.
Then e; and f, are in the same class, and, hence, the tree path connecting them
consists of edges in this class only. Therefore, if we change P, by replacing the “end
edge” es by fs, the boundary nodes contained inside b remain unchanged. We can do
the same for ¢t. Hence, the boundary nodes contained in b are those contained in the
local tree path between the originals of the edges in the boundary edge set of b or x or
y (if x ory are contained in b). (See Figure 2 for an illustration within 7', where the
subtree of T that is contracted to b in 7" is surrounded by an ellipsoid.)

F1G. 2. Boundary nodes in b.

Hence we can compute a boundary list B for x and y as follows. First we compute
a boundary list B’ in T” for the nodes ¢ and d. Then for each boundary node b in B’,

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1531

we obtain the nodes v and v in b that are x, y, or end nodes of the originals of the
edges in the boundary edge set of b. Subsequently, we compute the “local” boundary
list bl(b) for u and v. Finally, we extend the sublists of the end nodes u and v with
the appropriate originals of the edges in the boundary edge set of b; if u (or v) is not
a boundary node for = and y after all, then it is removed from bl(b). Then these local
boundary lists bl(b) together form B.

6. Division trees.

6.1. Description. Division trees form the base of the fractionally rooted trees.
For the terminology regarding contractions we refer to section 2.1.

Let F be a forest with an admissible partition of the edge set into edge classes,
distinguished as global edge classes. Let T be a tree in F. Let CT(T') be a contraction
tree of T', where C'N(T) is the collection of contraction nodes and for each b € CN(T),
tree(b) is the subtree of T that is contracted to b. Then T together with set CN(T)
and with subtrees tree(b) is called a division tree. An edge is called internal if it is
contained in some tree(b), and external otherwise. For a contraction node b, the ez-
tended tree extree(b) is tree(b) extended with the external edges incident with tree(b).
The edge set of a extree(b) is partitioned into local edge clusses induced by the global
edge classes of T. This yields an admissible partition. Tree extree(b) is rooted at
some node.

An external edge (e,z,y) may contain different information pertaining to the
two extended subtrees in which it is contained. Therefore, we distinguish two rep-
resentatives called (edge) sides, one for each of its end nodes (e,z,y), and (e, z,y),.
For external edge (e, 2,y), (e,z,y): is the representative for extree(contr(z)), where
contr(x) is the node to which z is contracted. For internal edges, both sides are
considered to be identical. We often omit referring to the proper side, however.

The class of edge e in extree(b) is denoted by class(e). Every edge class contains
at most one edge that is marked by a so-called d-mark, which must be an external
edge and which contains a direct pointer d(e) to the name of the edge class. (So, the
class name can be obtained fast.) For each edge class C in extree(b), the following
edges are distinguished (with direct pointers to them):

e max(C) is a maximal edge of C in the rooted tree extree(b). Such an edge
is then called the maximal edge of that class and is marked by an m-mark
(which is done implicitly).
e ext(C) is an external edge in it (if there exists any).
o direct(C) is the d-marked edge in it (if it exists).
For a node z in extree(b), the father edge of or an m-marked edge incident with
is called a preferred edge for x. Note that for node z and a class C incident with z,
there is exactly one preferred edge for z in C.

We describe the operations that we want to perform on F.

basic-external-link((e, z,y)). Let x and y be nodes in two different trees T, and
T,. Then link these trees by the edge (e,z,y), yielding tree T', where the partition of
the node set remains unchanged. This means that CN(T) = CN(T,) UCN(Ty), and
for each b € CN(T), tree(b) is not affected by the operation. The new edge (e, z,y)
forms a new singleton class on its own.

basic-internal-link((e, z,y),y). Let z and y be nodes in two different trees T, and
T,. Let ¢ = contr(x). Then link these trees by the edge (e, z,y), yielding tree T', where
tree(c) is extended with edge (e,z,y) and tree T,,. For example, CN(T) = CN(T),
and tree(b) remain unchanged for b € CN(T,)\{c}. The new edge (e, z,y) forms a
new singleton class on its own. The edges in T, are called affected.

1532 HAN LA POUTRE

basic-integrate(z, f). Let z be a node in tree T, and let f bg a (possibly new)
contraction node not occurring in CN(T'). Then change the partition of 7" such that
it consists of just one subtree, with contraction node f. For example, afterward
CN(T) = {f}. The edges in T are called affected. ‘

basic-boundary(x,y). Let contr(z) = contr(y). Then return a boundary list BL
for r and y. where the edges in BL are preferred. .

basic-joinclasses(J). Let J be a joining list with one node such that .there is at
most one edge class occurring in J that contains a d-marked edge. Then join the edge
classes occurring in J.

Note that for affected edges, the father relations and m-marks of these edges (edge
sides) may change during these calls.

6.2. Implementation. We implement the structures as follows. A tree T in F
is implemented in the common way. Each node z in T contains a pointer contr(x)
to the contraction node in which it is contained, and, conversely, for each contraction
node b, the list nodes(b) consists of the nodes in tree(b). Similarly, each external edge
has a pointer to its contraction edge and vice versa. An edge is marked external or
internal. The edge classes in extree(b) are represented by a Union-Find structure,
called the local class Union-Find structure. The initialization of a division tree with
one contraction node is straightforward.

The operations are implemented as follows. We omit straightforward implemen-
tation details regarding, e.g., handling marks, (special) pointers, lists, etc. Note that
converting an edge from external to internal may have consequences for clagses, marks,
and pointers.

basic-external-link((e, z,y)) and basic-integrate(z, f). The implementation of these
operations is obvious. Note that maximal edges can be found by checking for each
edge whether its father edge is in the same class.

basic-internal-link((e, z,y),y). Let ¢ = contr(z). First, basic-integrate(y,c) is
performed, edge (e, z,y) is inserted, and is made the father of y. Then max(class(e))
is set to (e, z,y).

basic-boundary(r,y). If = y, then return the boundary list BL consisting of
node z with empty sublist. Otherwise, the following is done. First, two boundary
lists s(x) and s(y) for the root paths of z and y are stepwisely computed in an
alternating way, until a node top has been visited by both computations. This is
as follows. List s(z) starts with visiting node z, and a step for s(z) is as follows:
obtain the father edge (e, 2, 2’) of the node z that is visited (if any), obtain the edge
max(class(e)) = (¢/,u,v), and visit the father node of ¢/. Shorten the lists s(x) and
s(y) such that they are boundary lists for z and top and for y and top respectively.
Boundary list BL is created from s(z) and s(y), where if top ¢ {z,y} and the two
edges related to top are in the same edge class, then top is removed from the list (since
it cannot be a boundary node of P).

basic-joinclasses(J). First a list CJ is created consisting of all (names of) edge
classes occurring in J. Then the classes in CJ are joined, and the edges ey, e,,, and
ees (given below) are related to this new class appropriately. Edge e,, is the maximum
edge of the class of the father edge of x if this class occurs in CJ , and of any class in
CJ otherwise. Edge ey is the (unique) d-marked edge in one of the classes in C.J (if
it exists), and e, is the external edge of some class in C'J (if any).

7. Fractionally rooted trees: The data structure. We present the recursive
data structure called the fractionally rooted trees. We consider a dynamic forest Fy
with an admissible partition of its edge set.

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1533

Let ¢ > 1. Let F; consist of contractions of a number of trees in Fy. The edge
set of forest F; is partitioned into the edge classes that are inherited from the edge
classes of Fy We introduce the structures FRT(:) for F; for i > 1.

Each tree of F; has a name in FRT(i) being some (new) unique node. For each tree
in F;, its data structure contains its tree name s and a collection of at most i layers,
numbered from ¢ in a decreasing order (say, down to down(s)). Each existing layer j
consists of a division tree, denoted by tree(s,). For layer 4, tree(s,i) is the tree in
F; with name s. For existing layer j < i, tree(s, j) is the contraction of tree(s, j + 1),
and its global edge classes are inherited from those of tree(s,j + 1). Finally, tree
name s forms the contraction tree of tree(s, down(s)). (The above number down(s)
is only used in the description.) We denote by treeg(s) the original in Fy of tree(s, 1)
in F;. To each tree name some parameters are associated, which will be given in the
following sections. The structure FRT(i) allows the operations on F; as described in
section 3, where we add the parameter i to easily allow recursion. Thus we have (with
the following modifications) the operations link((e,,y), s, t,i), where = € tree(s, i)
and y € tree(t,i); boundary(z,y,i), where the returned boundary list consists of
preferred edges; joinclasses(J,i); and candidates(z,y,), which does not return the
names of edges classes, and where the returned edges are preferred. In addition, we
have an operation treename(z) that trivially outputs the name s of the tree in which
a node z occurs.

For implementation purposes, we mention that the edge classes in Fyy are repre-
sented by a Union-Find structure UFy. If FRT(7) is used as a complete structure,
directly on Fy (i.e., F; = Fy), then UFy = UF(i) (see subsection 2.5), and each
operation joinclasses(J, 1) also joins all classes in Fy occurring in J (in UF,).

The structures FRT(¢) are defined inductively (in terms of divisions trees). The
method of induction has relations to those in [11, 12, 19, 23]. We start from a base
structure FRT(1) that corresponds to the idea using ordinary rooted trees. This
structure takes O(n.logn) time for an essential sequence of operations.

7.1. The structure FRT(1). Structure FRT(1) is a structure for a forest F}
that satisfies the following conditions. For each tree name s, we have a parameter
weight(s,1) that contains the number of nodes in tree(s,1). The local class Union-
Find structure for Fy is UF(1). FRT(1) is initialized as a forest of division trees with
one contraction node each. The algorithms for the operations are as follows.

link((e,z,y),s,t,1). W.lo.g. suppose that weight(s,1) < weight(t,1). Then
basic-internal-link((e, z,y),z) is performed.

boundary(x,y,1). Boundary list BL is obtained by a call basic-boundary(z,y).

joinclasses(J,1). The joining of classes is performed by calls basic-joinclasses(J,)
for each node x in J, where J, consists of x and its sublist in J.

candidates(x,y, 1). Let e, and e, be the father edges of = and y, respectively (if
they exist). Obtain the edges m, := max(class(e;)) and m, = max(class(ey)). If
my is incident with y, then e := m, (now e, is m-marked for y), otherwise e; = ey
this is similar for e},. Output e}, and e;. (Now e; and e are preferred.)

We remark that procedure candidates(z,y, 1) yields a correct pair of edges, since
if z and y are incident with the same edge class C, at least one of the father edges of
z and y must be in C, and if the father edge of, say, z is not in C, then the m-marked
edge of C' is incident with x.

7.2. The structure FRT(4) for ¢ > 1. Let ¢ > 1. Structure FRT(7) is a
structure for a forest F; that satisfies the following conditions. For each tree name

1534 HAN LA POUTRE

s, we keep a parameter weight(s,) that contains the number of nodes of tree(s, 7).
Also, we have a parameter lowindez (s, i) which is an integer > —1 that satisfies

(5) 2.A(1, lowindex(s,1)) < weight(s, 1).

(The parameter lowinder is incremented from time to time by the algorithms.) The
Union-Find structure for local classes in F; is UF(%).
Two cases are distinguished.
o If weight(s,i) = 1, then down(s) =i. Hence CN(tree(s,1)) = {s}.
o Otherwise, if weight(s,i) > 1, then down(s) < i. A contraction node b €
CN (tree(s,1)) satisfies (besides | nodes(b) |> 2)

(6) | nodes(b) |> 2.A(i, lowindex(s, i)).

If layer ¢ is removed, then the remaining part, starting from tree(s,i — 1)
in layer i — 1, is an FRT(i — 1)-structure. For an external edge (e,z,y) in
tree(s,i), side (e,z,y), is d-marked if its contraction edge is preferred for
contr(z).
Note that every edge class C in extree(b) for some b € CN(tree(s,i)) contains at
most one d-marked edge, since every edge class in tree(s,7 — 1) contains at most one
preferred edge incident with b.

7.2.1. Implementation. The initialization is done by initializing a forest of
division trees with one contraction node each. For singleton trees, the contraction
node is the tree name, where for nonsingleton trees, new tree names are recursively
related to them in the next layer. All the corresponding lowindex-values are set to
—1.

We give the algorithms for the operations. Note that, by (5), lowindex(s,7) > 0
implies that down(s) < 1.

link((e, z,y), s,t,7). W.lo.g., we assume that lowindex(s,t) > lowindex(t,1).

Let newweight := weight(s, i) + weight(t,7) and let ls := lowindex(s,i). There
are three cases. (For more intuition behind this operation, we refer to the comments
and figures in [19].)

o lowindex(s,1) > lowindex(t,7). A call basic-internal-link((e,x,y),y) is per-
formed. (Now, tree(t,%) is contracted to contr(z).) Then ¢ and its related
layers j with 7 < ¢ are disposed.

o lowindex(s,i) = lowindex(t,7) A newweight > 2.A(i,ls + 1). Then a new
contraction node f is created in layer ¢ — 1. Then basic-external-link(e, z,y)
and basic — integrate(z, f) are called, and contr(f) := s. (Now, tree(f)
consists of the former tree(s,i), tree(t,i), and (e,z,y).) The old existing
layers j related to s and ¢ with j < i are disposed, including tree name t.
Finally, lowindex(s,?) := lowindexz(s,i) + 1 and lowindex(s,i — 1) := —1.

o lowindex(s,i) = lowindex(t,7) A newweight < 2.A(i,1s + 1). Then we want
to do the actual linking on a lower layer. Therefore, first basic-external-
link((e,2,y)) is executed. Then the contraction edge (e,c,d) of (e,x,y) is
created, and a recursive call link((e, ¢, d), s,t,7 — 1) is performed, where all
the affected edges in layer ¢ — 1 are obtained. For each edge (¢’,u,v) in layer
i that is (e,z,y) or the original of an affected edge in layer i — 1, the d-marks
are updated: if its contraction edge is preferred for contr(u), then (&', u,v),
is d-marked; otherwise, (e’,u, v), is un-d-marked. The same is done for v.

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1535

boundary(x,y,1). Perform candidates(x,y, i) yielding edges e, and e,. If e, and
ey are in the same edge classes in Fy, then the desired boundary list consists of z and
y with e, and e, in their sublists. Otherwise, let ¢ = contr(z) and d = contr(y). Then
the boundary list BB for ¢ and d in layer i — 1 is (recursively) computed: if ¢ = d, then
BB contains just ¢, and otherwise a recursive call boundary(c,d, i — 1) is performed,
returning BB. For each boundary node b in BB, we obtain the nodes v and v in
tree(b) that are z, y, or end nodes of the originals of the edges in the boundary edge
set of b. Then a “local” boundary list for u and v in tree(d) is computed by basic-
boundary(u,v), where the sublists of the end nodes u and v are extended with the
originals of the (at most 2) appropriate edges in BB: if u (or v) is not a boundary
node for z and y after all, then it is removed from the local list. These local boundary
lists are concatenated, yielding the desired boundary list.

joinclasses(J,). First a list JJ for layer i — 1 is made, consisting of the nodes
contr(zr) for nodes x € J, where the sublist for ¢ is the concatenation of all sublists
for @ € J with contr(z) = ¢. Then, for each node ¢ € JJ, the classes occurring in its
sublist are obtained, and its sublist is replaced by a sublist that contains for each such
class one external edge (if any). All nodes of JJ with a sublist containing at most one
edge are removed. If JJ # (), then joinclasses(JJ,i — 1) is called. All the original
edge sides of the edges that have been un-m-marked in layer i — 1 are un-d-marked
in layer i. Finally, for each node z in J, basic-joinclasses(J,) is executed, where J,
contains = and its sublist in J.

candidates(x,y,1). Let ¢ = contr(x) and d = contr(y). If ¢ = d, then do the same
as for i = 1. Otherwise, perform candidates(c, d,i — 1) that returns the (preferred)
edges e. and ey. Let edge e; € extree(c) be the (d-marked) original of e.. Let
es := max(d(e1)). If ey is incident with z, then e, := ey (e, is m-marked w.r.t. z);
otherwise, e, is the father edge of . The same is done for y, yielding e,. Return the
edges e, and e,. This is a correct pair of edges, which follows by the specification
of candidates(i — 1) and similar observations as for i = 1. Note that by using d(e;)
instead of class(e;), we need to follow one pointer only, instead of performing a Find.

We are left with the problem of how to obtain and store the values weight,
lowindez, and the Ackermann values. All these values depend on both the tree name
and the layer number. The values lowindex(s, j) and weight(s,j) for all relevant j
are stored in a list for s. For further details and for the problem of how to obtain
Ackermann values for all the structures (viz., by means of one “Ackermann net” for
2n), we refer to [19].

8. Complexity of FRT(i). We consider the time and space complexity of
FRT(4) structures (¢ > 1). In the notation, we omit the procedure parameters except
for the layer number i. Operations treename and candidates(i) can be performed in
O(i) time, and a nonessential call boundary(i) can be done in O(i) time plus O(1)
Finds in UF,. For candidates, this is seen as follows. If contr(z) = contr(y), it
takes one Find in UF(¢), which is O(4) time. Otherwise, all instructions except for
the recursive call can be done in constant time (because of the d-marks and preferred
edges), giving O(¢) time by induction. For a nonessential call boundary, we see that
if i =1 then = ~ y, and thus basic-boundary(z,y) is similar to candidates(x,y,1),
while if i > 1, then candidates(z,y,1) is executed together with two Finds.

In the sequel, we consider the complexity of essential sequences (see section 3). We
determine the time complexity in steps, where one step denotes a Find operation (in
any involved Union-Find structure), a candidates operation, a nonessential boundary
operation, or one ordinary elementary computation step not included in these three

1536 HAN LA POUTRE

operations. Hence each candidates operation and each nonessential call of boundary
takes 1 step.

We obtain the following result. The proof is given in subsection 8.1 (which can
be skipped at first reading). Note that if F; = Fp, then UFy = UF'(4) and the set
unions take O(n.a(i,n)) time (see Theorem 2.3).

LEMMA 8.1. An essential sequence in an FRT(i) structure with n nodes needs @
total of O(n.a(i,n)) steps, except for joining edge classes in Fy (1 > 1, n > 2).

8.1. Proof of Lemma 8.1. Lemma 8.1 is proved by induction in a way similar
to the proof in [19]. We first consider the net cost of the basic operations, i.e., the
cost of the operations except for the cost of set unions. Then basic-integrate(y, f) and
basic-tnternal-link((e, z,y),y) take net O(|T,|) steps, where T}, is the tree containing
y; basic-external-link((e,z,y)) takes net O(1) steps. A call basic-boundary(x,y)
takes O(|BL|) steps if BL is the resulting boundary list, and basic-joinclasses(J)
takes O(|E|) net steps, where E; is the number of edges in J.

We now consider the complexity of the structures FRT (7). As in [19], we do not
need to consider the complexity of storing and obtaining the information for each
layer related to a tree name, since this can be charged easily to other operations. We
show that an essential sequence in FRT(3) takes O(n.a(i,n)) steps on n nodes (except
for the cost on Fy). Moreover, we show that the number of times that an edge
becomes affected (see section 6) is at most a(i,n). We prove all this by considering
the procedures link(), (essential) boundary(i), and joinclasses(i), where the cost
of set union or essential recursive calls is considered separately. Here an essential
recurstve callis any recursive call of these procedures with the restriction that recursive
boundary calls are essential.

8.1.1. FRT(1). We consider the cost of an essential sequence on n nodes (n > 1)
in FRT(1) by determining for each procedure the cost of all its calls.

Procedure link((e, z,y), s, t, 1) takes at most O(|weight(t,1)|) steps, where, w.l.o.g.
tree(t, 1) is the smallest of the two sets to be joined. Charge each node in tree(t, 1) for
O(1) cost. Since the nodes in tree(t, 1) become elements of a tree with at least double
size, all calls take at most |logn| < a(1,n) steps together. Similarly, the number of
times that an edge is affected is at most a(1,n).

A call boundary(z,y,1) takes O(|BL|) steps. Note that at least | BL| — 1 different
classes occur in BL. Charge O(1) cost to the encountered classes. In the essential
sequence, all these classes are subsequently joined by a call joinclasses. This gives
at most O(n) steps.

Procedure call joinclasses(J, 1) takes O(1) steps for each class that is joined; thus
the total amount of steps is O(n) steps apart from the joinings.

Finally, since there are at most 2n edge sides, the time for set unions in UF(1) is
O(n.a(1,n)) (Theorem 2.3).

Therefore, FRT(1) takes at most d.n.a(1,n) steps for an essential sequence on n

10des (n > 1) for some constant d. Moreover, the number of times that a node is
iffected is at most a(1,n).

8.1.2. FRT(i) for ¢ > 1. We consider the cost for an essential sequence on n
10des (n > 1) in FRT(¢) with ¢ > 1. We perform the analysis by means of induction
on 4. Suppose FRT(i — 1) takes at most c.k.a(i — 1,k) steps in an essential sequence
on k nodes (k > 1), where c is some arbitrary constant. Moreover, suppose that
the number of times that an edge in the FRT(7 — 1) structure is affected is at most

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1537

a(i — 1, k). For each procedure or specific part of the computation, we determine the
cost of all its calls.

For an essential call of boundary(i), we have the following. First, the calls of
candidates(i) and the recursive call boundary(i — 1) take O(1) net steps. (The call
boundary(i — 1) takes net O(1) steps if it is nonessential and it takes no steps if it
is essential.) Then local boundary lists are computed and manipulated (but do not
become empty, see section 5). Hence the net cost is O(|BL|) steps. Since afterward
all classes occurring in BL must be joined by a call of joinclasses in the essential
sequence, it follows that the total net amount of steps is O(n).

Procedure joinclasses(i) takes a net number of steps linear to the number of
classes that will be joined, apart from the recursive call. Hence this is O(n) in total.

We divide link ((e, x,y), s,t,1) into several parts and compute the net cost of each
of these parts for all executions together. First, the removal of parts of structures
can be charged to their creation. Second, the calls of procedure basic-internal-link
and basic-integrate take at most O(the number of processed nodes) steps. Therefore,
we charge these steps to the processed nodes. Note that in both cases the processed
nodes will (henceforth) be contained in a new tree with higher lowindex value and
that there are at most a(i, [25]) + 2 < 3.a(i,n) different lowindex values (cf. (5)).
Therefore, the total cost of these calls is O(n.a(i,n)) steps. Similarly, it follows that
an edge is affected is at most a(é,n) times. Third, the cost for changing d-marks of
edges in procedure [ink(i) is linear to the number of times that contraction edges are
affected in the recursive call link(i—1). In Observation 8.4 we will show that this is at
most 3.n.a(i,n). Hence this takes O(n.a(i,n)) steps altogether. Last, the rest of the
procedure requires O(1) net time per call of link(7), which gives O(n) time altogether.
In conclusion, all calls of link take at most O(n.a(i,n)) steps net and affect an edge
at most a(z,n) times.

The required time for set unions in UF () is O(n.a(i,n)) (Theorem 2.3), since
there are at most 2n edge sides.

Finally, we consider the essential recursive calls (performed on contraction nodes).
We first have two observations (the latter can be proved as in [19]).

OBSERVATION 8.2. The operations on contraction trees (for layer i) by procedure
link((e, z,y),1) are the creation of a singleton tree and the linking and removal of trees;
procedures joinclasses(i) and boundary(i) only change edge classes in contraction
trees.

OBSERVATION 8.3. In link((e,z,y),s,t,1), a recursive call is performed only if

1 < lowindex(s, i) = lowindex(t,1) < a(i,n)
Nweight(s, 1) + weight(t,1) < 2.A(i, lowindex(s, i) + 1).

For a contraction node ¢ € C'N(tree(s,t)), we denote by lowindex(c) the value
lowindex(s,), which is fixed during its existence. We call ¢ an l-contraction node
if lowindex(c) = I. Similarly, we say that a recursive call link((e,c,d),s,t,7 — 1)
is an l-call if | = lowindez(s,i) = lowindex(t,i). A recursive call boundary(i — 1)
or joinclasses(i — 1) is an l-call if | = lowindex(s,%), where s is the name of the
tree on which the operation is applied. Obviously an l-call operates on [-contraction
nodes only, and vice versa. We compute the cost of all [-calls for fixed value I,
-1 <1< a(i,n). Note that any tree of l-contraction nodes with | < 0 consists of one
contraction node. Hence an [-call of boundary(i — 1) and joinclasses(i — 1) occurs
only if { > 1. By Observation 8.3 and since |nodes(b)| > 2 for each contraction node
b, it follows in case of an [-call link (s,t,7 — 1) that [> 1, and that weight(s,i — 1) +

1538 HAN LA POUTRE

weight(t,i—1) < A(i,1+1). By this and by Observation 8.2, the maximal size of any
tree of [-contraction nodes is < A(i,{ + 1).

Now let [be fixed number with 1 < I < a(i,n). Partition the total collection of
all I-contraction nodes involved in l-calls into the existing maximal sets. Then the
size of such a maximal set is at most A(i,l+ 1). It easily follows that the sequence of
essential recursive I-calls on the nodes of a maximal set in FRT(i — 1) is an essential
sequence. For each such maximal set of k contraction nodes, the cost of all (previous)
essential [-calls on these nodes in FRT (i — 1) is at most c.k.a(i — 1,k) < c.k. a(i —
1, A(i,1 + 1)). Hence the total cost of all essential {-calls in FRT(i — 1) on [-cluster
nodes is at most c.(number of I-cluster nodes). a(i—1, A(i,1+1)). By (6), there are at
most n/(2.A(4,1)) l-contraction nodes. Therefore, this cost is at most ¢.5—t75 - a(i —
1, A(i,1 + 1)), which is at most éc.n by using 7 > 1 and equations (1) (on A(4,{+ 1))
and (4), respectively.

Since at most a(i,n) values [of lowindex occur, the cost of all these FRT (i — 1)-
calls is at most Lc.n.a(in).

Similar to the above, by the induction hypothesis, the number of times that -
contraction edges are affected in the l-calls link(i — 1) is at most 5.n for fixed [.

OBSERVATION 8.4. The number of times that contraction edges are affected in
recursive calls at most link(i — 1) is 2.n.a(i,n).

Combining all the above results yields that the total number of steps is at most
c1.n + ca.n.a(i,n) + sen.a(i,n) for some 1 and ¢; (independent of ¢). By taking
¢ = max{d,2.(c; + ¢2)}, it follows by induction that an essential sequence in FRT(3)
takes at most c.n.a(i, n) steps and affects an edge at most a(4,n) times. This concludes
the proof of Lemma 8.1.

9. FRT structures. We consider FRT (i)-structures with F; = Fy and express
the operations of section 3 in terms of section 7. It is easily seen how to use the latter
for the former; we may only need an additional call of treename or O(1) Finds in UF,
for the proper result. Thus Lemma 8.1 remains valid for the operations in section 3
(in order of magnitude). Note that by Theorem 2.3, a step, as defined in the previous
subsection, is O(4) time.

THEOREM 9.1. An essential sequence in FRT(i) on n nodes needs a total time of
O(n.i.a(i,n)) (i > 1, n > 2). Each candidates operation and each nonessential call
boundary takes O(i) time. The structure can be initialized in O(n) time and takes
O(n) space.

Note that if n is the number of nodes that are not still contained in singleton
trees after the execution of the above sequence (thus n’ < n), then the total time is
even O(n’.i.a(i,n')). Also, the theorem can be extended with the insertion of new
(isolated) nodes in the structure with the same complexity bounds, where the insertion
of a new node takes O(1) time (see also [19]).

We define an o-FRT structure as follows. Initially, FRT(a(n,n)) is used. From
time to time, a transformation is performed, replacing an FRT(4) structure by an
FRT(i — 1) structure, viz., each time that a(g,n) decreases by one, where at any
moment ¢ is the number of queries candidates performed until then. This is performed
in a way similar to the proof of Theorem 5.2 of [19] (full paper), where now the query
candidates plays the role of the Finds, and where link and joinclasses play the role of
the Union operations. The building of a new FRT(i—1) is done similar to Theorem 5.2
in [19], but instead of building just parts of FRT(i — 1) during candidates operations,
we have for all pointers in Fy two versions, and we build and handle FRT(i — 1) with
the unused pointer version. (This duplication is only relevant in case we want a single

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1539

candidates query to have O(a(q,n)) worst-case time.) Then we obtain the following
result.

THEOREM 9.2. Let an «-FRT structure for an “empty” forest with n nodes be
given. Then a matching sequence in a-FRT needs a total of O((n+m).a(m,n)) time
(where m is the number of operations candidates and boundary that is performed),
where the qth call of candidates takes O(a(g,n)) time. The structure can be initialized
in O(n) time and takes O(n) space.

Proof. The proof is related to the proof of Theorem 5.2 in [19]. We leave this as
an exercise for the reader (and refer to 22, 23]). 0

Note that if n’ is defined as before (and, hence, the essential subsequence of the
matching sequence consists of §(n’) operations), then the total time is even O((n’ +
m).c(m,n)) time. Also, by using the same transformation techniques as in Theo-
rem 6.2 in [19], the above theorem can be extended with the insertion of new (isolated)
nodes in the structure with the corresponding complexity bound O((n +m).a(m,n))
(where m and n denote the current number at the time of consideration), where the
insertion of a new node takes O(1) time. We will not give details here but refer to
[22, 23]. (We want to remark that if at any time m = O(n), as for the 2ec-and the
3ec-problem, then only rebuildings from FRT(7) to FRT(i 4+ 1) are needed.)

In practice there is no need to perform transformations of FRT-structures or to
compute Ackermann values [19]. This is because a(m,n) < 3 for any practical n.
Thus, structures FRT(¢) with ¢ € {2, 3} are suited for all practical situations and only
need the nontrivial Ackermann values A(2,3) = 16 and A(2,4) = A(3,3) = 65536.
An essential sequence in FRT(2) takes < ¢.2.n.a(2,n) = 2¢n.log” n time, which is
< 8cn for n < 2!6 and < 10cn for n < 285536 where ¢ is not too large a constant
(see section 8). Therefore, we conjecture that FRT(2) can be implemented as a fast
structure for all practical situations, with constant-time queries.

10. 3-edge-connectivity. We will now extend the results to the maintenance
of 3ec-components in a graph, with a time complexity of O(n + m.a(m,n)) for n
nodes and m queries and insertions. In subsection 10.1 we consider maintaining the
3ec-relation within 2-edge-connected graphs and, subsequently, in subsection 10.2 we
consider the problem for general graphs.

Let G = (V, E) be a graph. The set V' can be partitioned into equivalence classes
for 3-edge-connectivity, called 3ec-classes. Each 3ec-class C' is represented by a new
node ¢, called the class node of C. Let 3ec(x) be the class node of the 3ec-class in
which the vertex x is contained. We define the graph 3ec(G) as follows.

3ec(G) = (3ec(V),{(e,3ec(x),3ec(y))|(e, x,y) € E A 3ec(x) # 3ec(y)}).

Hence, 3ec(@) is the graph that is obtained if we contract each 3ec-class into one
class node (see Figure 3 if G is 2-edge-connected). No two nodes in 3ec(G) are 3-
edge-connected (by Lemma 2.2).

10.1. 2-edge-connected graphs. In this subsection, we suppose that graph G
is 2-edge-connected, and we state results from the companion paper [21]. Every two
distinct class nodes must lie on a common elementary cycle in 3ec(G), while simple
cycles in 3ec(G) cannot intersect in more than one class node.

Let Cyc(3ec(G)) be the graph that is constructed from 3ec(G) as follows. Each
nontrivial simple cycle is represented by a distinct node called a cycle node. Let
en(3ec(G)) be the set of cycle nodes. For a cycle node s, let cycle(s) be the set of
all class nodes that are on the cycle s. The graph Cyc(3ec(G)) consists of the class

1540 HAN LA POUTRE

nodes and cycle nodes of 3ec(G), where a class node c is adjacent to a cycle node s in
Cyc(3ec(G)) iff ¢ lies on cycle s in 3ec(G). Therefore, graph Cyc(3ec(G)) shows the
incidence relation for class nodes and cycles. Moreover, graph Cyc(3ec(G)) is a tree
called the cycle tree of G. The structure of Cyc(3ec(G)) is illustrated in Figure 3,
where the cycle nodes are drawn as boxes.

Fic. 3. A 2-edge-connected graph G and the related graphs 3ec(G) and Cyc(3ec(G)).

10.1.1. Edge insertions. We maintain the 3ec-relation under edge insertions
by means of Cyc(3ec(G)). Suppose a new edge (e, z,y) is inserted in G. If 3ec(z) =
3ec(y), then by Lemma 2.2, the 3ec-relation, 3ec(G), and Cyc(3ec(G)) remain un-
changed. So, we can assume that 3ec(z) # 3ec(y) A 2ec(xz) = 2ec(y). Then edge
(e, 3ec(x), 3ec(y)) arises as a new edge in 3ec(G).

LEmMMA 10.1 (see [21]). Let G be a 2-edge-connected graph. Suppose that an edge
(e,3ec(x), 3ec(y)) is inserted to the graph 3ec(G). Then all the class nodes on the
tree path P from 3ec(z) to 3ec(y) in Cyc(3ec(G)) become 3-edge-connected in 3ec(G),
while the other pairs of distinct class nodes in 3ec(G) stay only 2-edge-connected.

Thus, for all class nodes on P, all the corresponding classes form a new class (by
Lemma 2.2). The update can now be performed as follows:

e obtain the tree path P between 3ec(z) and 3ec(y) in Cyc(3ec(G)),

e join all the classes “on” P into one new class C’, and

e adapt the cycle tree Cyc(3ec(G)) accordingly.
The update heavily changes the structure of Cyc(3ec(G)). (For illustrations, we refer
to [21].) The cycle tree changes as follows. Consider the simple cycle s and the class
nodes c and d (¢ # d) such that s,c, and d are on P and ¢,d € cycle(s). Then classes
c and d are joined into the new class ¢’. The original simple cycle s splits into two
“smaller” simple cycles, each one consisting of the class node ¢’ and of one of the two
parts of the former cycle between ¢ and d (we refer to [21]).

LEMMA 10.2 (see [21]). Given a 2-edge-connected graph G of n nodes with a
cycle tree, there ezists a data structure for the 3ec-problem (that also maintains a

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1541

cycle tree) such that the following holds. The total time for m insertions and queries
is O(m + n) time plus the time needed to perform O(m + n) Finds and O(n) Unions
and Splits in a Union-Find or a Circular Split-Find structure for O(n) elements. The
data structure takes O(n) space.

Here, the Circular Split-Find problem [23] is a problem closely related to the
Split-Find problem [11]. It deals with splitting cyclic lists into two new cyclic lists,
determined by two splitting nodes. In [23], solutions for this problem are given with
similar complexities as the UF-structures (cf. section 2.5). (They are closely related
to [11].) We denote such structures similarly by GSF(i) and o-GSF structures. Later,
we choose appropriate structures when applying Lemma 10.2.

10.2. General graphs.

10.2.1. Observations. We extend the solution of the previous section to general
graphs. We first state observations of [21] (to which we refer for further details and
figures). For detecting the 3ec-classes it suffices to detect the 3ec-classes inside the 2ec-
components. Therefore, our algorithms for general graphs maintain the 2ec-classes (as
in section 4), and they maintain the 3ec-classes within 2ec-components. We consider
the forest of all cycle trees for the 2ec-components, called the cycle forest Cyc(3ec(G))
of G.

Suppose edge (e, z,y) is inserted in graph G yielding graph G'. If ¢(z) # ¢(y),
then the 2ec-classes and the 3ec-classes do not change. Otherwise, if 2ec(z) = 2ec(y),
then (e, z,y) is inserted inside a 2ec-component and the changes as described in sub-
section 10.1.1 occur. Otherwise, we have 2ec(z) # 2ec(y) A c(z) = ¢(y). Consider
2ec(G). Let Py be the tree path between 2ec(z) and 2ec(y) in 2ec(G) (see subsec-
tion 4.1). Then the major changes are that

1. all 2ec-classes corresponding to class nodes on P, form one new 2ec-class,

2. for each 2ec-class C on Py, the 3ec-classes inside C' are changed, and

3. a new cycle s of 3ec-classes arises; the new cycle node s links the (updated)

cycle trees that are contained in the 2ec-classes on Ps.

We consider the changes more precisely. The first part is identical to subsection 4.1.
For the second part, we consider the changes of the 3ec-classes that occur in 2ec-
classes on P,. Consider a 2ec-class C on P, in 2ec(G). Let u and v be the two nodes
in C that are z, y, or end nodes of interconnection edges between C and other classes
on P. (We call u and v the interconnection nodes for C.) Then there is a new path
between 1 and v in G’ that does not intersect with C except for u and v, where
such a path did not previously exist in G. Hence, considered within C' only, this
corresponds to inserting a temporary edge between the nodes w and v, since the 3ec-
classes are completely determined by the 2ec-components in which they are contained
(see Lemma 2.1). For the third part, now suppose all these “local” insertions are
performed in the 2ec-classes on P,. Then the two interconnection nodes in a 2ec-
class C on P, are in the same (updated) 3ec-class in C, called the interconnection
3ec-class in C. All these interconnection 3ec-classes form a new cycle s. Then in the
cycle forest s must be linked to these interconnection 3ec-classes, and thus it links the
corresponding cycle trees.

10.2.2. Data structures and approach. We observe that when an edge (e, z,y)
is inserted in a 2ec-component H, the changes in the 3ec-relation and Cyc(3ec(H))
are fully determined by just the 3ec-classes in which z and y are contained.

Consider a graph G = (V, E). We change the cycle forest Cyc(3ec(G)) by aug-
menting the collection of nodes of G and partitioning the thus-obtained 3ec-classes

1542 HAN LA POUTRE

into subclasses. We do this as follows. Each 3ec-class in G may be extende.c'l with
an arbitrary number of new, auxiliary nodes that are considered to be nodes in thgt
3ec-class (conceivably by means of artificial edges). The auxiliary nodes are not dis-
tinguished from the original nodes.

Each (extended) 3ec-class C of G is partitioned into subclasses of nodes. To each
subclass a (new) distinct node is related called the subclass node. We call' these the
subclass nodes for C. The subclass node of the subclass to which x belongs is denoted
by sub(x). Now an augmented cycle forest AFg for G is a forest on the subclass nodes
and the cycle nodes of Cyc(3ec(G)) such that for each 3ec-class C of G the subclass
nodes for C' induce a subtree of AFg and such that Cyc(3ec(G)) is obtained if for
each 3ec-class C its subclass nodes are contracted into one node. We call an edge that
links two subclass nodes of a 3ec-class C a connector for 3ec-class C'. The set of all the
connectors for C is called the connector class for C'. Stated informally, AFg can be
obtained by replacing each class node in Cyc(3ec(G)) by some tree of subclass nodes
and connectors. See Figure 4, where cycle nodes are drawn as boxes and (sub)class
nodes as dots.

F1c. 4. Graphs Cyc(3ec(G)) and AFg.

We consider the insertion of an edge (e,z,y) in a 2-edge-connected graph G
in terms of AFg. Let 2ec(z) = 2ec(y) A 3ec(z) # 3ec(y). The 3ec-classes on the
tree path from 3ec(z) to 3ec(y) in Cyc(3ec(Q)) correspond to the 3ec-classes that
have at least one subclass on the tree path P between sub(z) and sub(y) in AFg.
Hence we can update the structure according to the following observations (also cf.
subsection 10.1.1).

e Two successive subclass nodes on P (without a cycle node in between) cor-
respond to the same class. Hence it suffices to obtain just the subclass nodes
on P that are adjacent to a cycle node on P.

o All the classes of which a subclass node is “on” P must be joined into one
new class C’.

e The augmented cycle tree AF; must be adapted. Hence, all subclass nodes
for C" must form a (sub)tree. This can be done by splitting each cycle s
occurring on P and by joining the two subclasses that are the neighbors of
s on P. (These updates can be performed locally as for cycle trees for each
part of P without adjacent subclass nodes.)

Our goal structure is now as follows. To a graph G we relate a forest be(G) and
an augmented cycle forest AFg that satisfy the following. The graph G = (V, E)

is extended with an (incremental) collection of auxiliary nodes, which are 3-

edge-
connected to least one original node. The (

thus extended) vertex set is partitioned

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1543

into disjoint sets, called basic-clusters. Each basic-cluster has a (new) unique node
called cluster node. The nodes of forest bc(G) are these cluster nodes. We call the
edges of bc(G) be-edges. The following constraints are satisfied.

e Each 3ec-class C is partitioned into subclasses by intersecting C' with the
basic clusters. Then AFy is an augmented cycle forest for G, based on this
partition into subclasses.

e Each subclass node is considered to be contained in the basic cluster that
contains its subclass. Then for a basic-cluster b, the subclass nodes that are
contained in b together with appropriate cycle nodes of AFs induce a subtree
of AFg denoted by tree(b).

e Every connector in AFg corresponds to exactly one edge in be(G) (and vice
versa).

It follows that for a cluster b, tree(b) does not have two adjacent subclass nodes.
Therefore, tree(b) is a cycle tree of some 2-edge-connected graph that has the nodes
of basic-cluster b as its nodes together with a number of appropriate edges that induce
the 3ec-relation as represented by tree(b).

We observe that bc(G) can be obtained from AFg by contracting all subclass
nodes in a basic-cluster b to cluster node b. Thus be(G) is an other contraction of
AF¢ (different from Cyc(G)). See Figure 5 for the example of Figure 4. We now
define edge classes on bc(G) as the classes inherited from the connector classes in
AF¢ (see section 2.1). Note that if two be-edges incident with a cluster node b are in
the same bc-edge class, then their originals in AF; must have the same end node (a
subclass node) in cluster b.

Fic. 5. Forests AFg and be(G).

Now the strategy for inserting an edge (e, z,y) in 2-edge-connected graph G can
be put in terms of be(G) as follows. Let ¢ and d be the basic clusters containing x
and y, respectively. Suppose that ¢ # d.
e Let P’ be the tree path in be(G) between ¢ and d. Let P be the tree path in
AFg between sub(z) and sub(y). To obtain the relevant parts of P, it suffices
to obtain a boundary list BL for ¢ and d in be(G). This is seen as follows.
The two incident bc-edges of an internal node b on P’ are in the same bec-edge
class. Hence their originals (which lie on P) have the same end node sb in
b, which, therefore, is not adjacent to a cycle node on P. Note that for a
boundary node b & {c,d} of P’, its two incident bc-edges on P’ are not in the
same bc-edge class, and thus cluster b contains at least two subclass nodes
and one cycle node of P.

1544 HAN LA POUTRE

e For each such cluster b with b € BL, a local update of the local cycle tree
must be performed by joining all subclasses on the part P, of P inside cluster
b and by updating the local cycle tree correspondingly. The end nodes sby
and sby of Py are sub(x), sub(y), or the end nodes in cluster b of the originals
of the be-edges on P’. The latter can also be obtained from the bc-edges in the
sublist of b in BL. The update thus corresponds to the update for inserting a
temporary edge between any two nodes of G that are contained in subclasses
sby and sby.

10.2.3. Data structures and algorithms. In this section, we describe a data
structure for the 3ec-problem, called 3EC structure. We distinguish between the
different layers of representation.

The representation of graph G is as follows. The vertex set of G may be extended
from time to time with auxiliary nodes. There is a structure 2EC' to maintain the
2ec-classes of G. This structure works on the regular nodes only, and, hence, the
additional nodes are not involved. There is a “global” Union-Find structure U F3e.
for implementing the 3ec-classes of nodes of G. We recall that in the 2EC' structure,
there are Union-Find structures UF, and UFs,..

Each node = has a pointer clus(z) to the cluster node in which it is contained.
Forest be(G) is implemented as a fractionally rooted tree structure (F'RT') denoted
by FRT3ec.

The augmented cycle forest AFg is not implemented as a whole. In fact, it
is implemented in parts, viz., by cycle trees inside basic-clusters and by separate
connectors. To be precise, we have the following implementation. Instead of a subclass
node s as the end node of a connector, we take a node in subclass s as an end node.
This is because subclasses are joined from time to time. Then the subclasses that are
the ends of a connector (e, z,y) are sub(z) and sub(y). For a basic-cluster b, tree(b) is
implemented and maintained as a cycle tree as in Lemma 10.2. We refer to this as the
local structure. The Union-Find and Circular Split-Find structures used in the local
structure are denoted by U Fj,. and GSF),.. To each subclass, we relate a connector
that has one of its end nodes in that subclass (if it exists) its associated connector.

The initialization for an empty graph is straightforward: each basic cluster con-
tains one node. Also, a query corresponds to a Find in U Fs,,.

Suppose some new edge (e,z,y) is inserted in G, resulting in graph G’. Let
the corresponding clusters for = and y be ¢ and d. Then procedure inserts((e, z,v))
updates the structure as follows if 3ec(x) # 3ec(y).

L. c(x) # c(y). Then inserts((e,z,vy)) is performed

2. c(z) = c(y) A 2ec(x) = 2ec(y) A 3ec(z) # 3ec(y). If ¢ = d, then list BL is the
list consisting of ¢ with empty sublist; otherwise, boundary(c, d) is performed
in FRT;.., yielding boundary list BL in bc(G). List BL is copied as list J
but with empty sublists.
For each basic cluster b in BL, the following is done. First, the nodes u and
v in tree(b) are obtained that are z, y, or end nodes of the originals of the
be-edges in the sublist of b (if any). If 3ec(u) # 3ec(v), then the following
is done. A local insertion (Lemma 10.2) of a temporary edge (e,u,v) in
basic-cluster b is performed to update tree(b). Then an associated connector
is obtained for each of the subclasses that are joined in cluster b, and the
corresponding be-edges are put in the sublist for b in J (since all classes must
be joined later in the global structure). One of these connectors (if any) is
assigned to the resulting subclass as its associated edge.

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1545

All the 3ec-classes of which a subclass was involved in the joinings are joined
in UF3.. (e.g., by taking a node from each subclass). Finally, the FRTse,
structure is updated by means of call joinclasses(J) (where if the sublist of
node ¢ or d is empty, then this node is removed from J.)

3. c(z) = e(y) A 2ec(z) # 2ec(y). First, the 2ec-classes that will be joined
into one new class are determined. This is done as follows. A boundary list
BL for x and y is computed in 2EC (this is only the first part of the call
inserta((e,z,y))). Subsequently, the names of the 2ec-classes are obtained.
Then a linear list L is constructed that consists of these names and of those
edges in BL with end nodes in different 2ec-classes: the names and edges
alternate in L such that an edge is bracketed by the two corresponding 2ec-
classes. Now L contains the tree path between 2ec(z) and 2ec(y) in 2ec(G)
in the proper order.

For each 2ec-class C in L the following is done. We obtain the nodes v and

v in C that are z, y, or the end nodes of the surrounding edges in L. If
3ec(u) # 3ec(v) then a temporary edge between u and v in C is inserted by a

call inserts((e’,u,v)). Afterward, a new, auxiliary node z¢ is created, and it

is inserted in the interconnection 3ec-class 3ec(u). A connector (e, zc, z()

is created between z¢ and some node 2z of 3ec-class 3ec(u).

The nodes z¢ (C € L) together form a new basic cluster b. Thus a cycle tree

corresponding to the cycle of the new subclasses {z¢} (C € L) is initialized

in cluster b (in the same order as the 2ec-components C in L).

Cluster node b is linked with the involved trees in bc(G) by means of new

be-edges as follows. For each z¢ and connector (ef, zc, 2(r), let b = clus(z;).

Then a be-edge (e, b, b') is created for this connector, and a call link((el, b,d'))
is performed in be(G). Edge (er, 2¢, z¢) is associated with sub(z¢) and

sub(z¢). If sub(2y) already had an associated edge (¢”, 2", z"), then (ef, b, V')

is put in the class containing (e, clus(z"), clus(z"")) by a call of joinclasses.

The 2ec-classes in L are joined by performing a real call inserta((e, x,y)) in

2EC.

10.2.4. Complexity. We consider the complexity of the above algorithm. Re-
garding the creation of auxiliary nodes, suppose the initial graph Gg has n (regular)
nodes. The total number of new nodes created by the algorithm is at most 2n—1, since
a new node is created for each 2ec-class that is joined. Similarly, the total number of
created clusters is at most n—1. Hence we only need F'RT and Union-Find structures
for O(n) nodes. We denote all the Union-Find structures used independently in 3EC
(not as part of FRT3. or FRTs..) by UF. We consider the UF structures to be one
structure, on O(n) elements. Obviously, a nonessential insertion takes time linear to
O(1) Finds.

LEMMA 10.3. In a 3EC structure, the time for a sequence of essential insertions
is at most linear to the time for a matching sequence of O(n) operations on O(n)
nodes in F'RT3.. and FRTs.. and for O(n) Unions, Splits, and Finds in the UF and
GSF,. structures.

Proof. We define a step to be an ordinary computational step or a Find operation
in any UF or GSF),. structure. We consider a collection of essential inserts opera-
tions, including the inserts calls during the execution of an inserts itself. Therefore,
we do not consider the cost of an essential call inserts inside inserts. Obviously,
there are at most O(n) essential insertions possible. So the essential inserts opera-
tions yield a matching sequence of O(n) operations in F'RT3... Also, all calls inserts

1546 HAN LA POUTRE

in the calls inserts are essential. Therefore, by Observation 4.2, the lemma holds for
the operations in 2EC.

We consider the net cost of the sequence of essential inserts calls: i.e., the cost
of the parts of the computations apart from the computations considered above, from
O(1) steps per call inserts, and from the Unions and Splits in the UF and GSFioc
structures.

1. Case ¢(z) # ¢(y). Then there is no net cost.

2. Case 2ec(x) = 2ec(y) A 3ec(z) # 3ec(y). We consider the net cost of a call
inserts. One part corresponds to the cost of essential local insertions inside
clusters. This takes O(1) steps for each such cluster and for each subclass
that is joined. These O(1) steps are considered to be included in the cost for
joining two subclasses by a local insertion (at most 2 of these clusters have
no subclasses that are joined).

Since, in total, at most O(n) essential local insertions can occur, the net cost
is linear to O(n) Finds in these structures (by Lemma 10.2).

3. c(z) = c(y) A2ec(z) # 2ec(y). The computation of a boundary list in 2EC is
a part of an essential call inserty. The remainder takes O(|L|) steps, plus a
number of (other) inserts calls (this latter cost is included in case 2). Since
the 2ec-classes in L are joined, the total net cost is O(n) steps. 0

A 3EC(3) structure is a 3EC structure where FRT3.. = FRT(i), FRTsec =
FRT (i), UF =UF(i), and GSF = GSF(i).

THEOREM 10.4. A 3EC(i) structure solves the 3ec-problem such that the follow-
ing holds. The total time that is needed for all essential insertions is O(n.i.a(i,n)),
whereas a query and nonessential insertion can be performed in O(3) time. The struc-
ture can be initialized in O(n) time and takes O(n) space (i > 1, n > 2).

Proof. By Lemma 10.3, Theorems 2.3 and 9.1, and [23] (for GSF(2)), the theorem
follows. 0

The a-3EC structure is a 3EC structure with FRT3.. = FRT(a(n,n)), FRTpec =
FRT(a(n,n)), UF = a-UF, and GSF = a-GSF, where in the latter structures the
number of Finds is replaced by the number of insert operations and queries. Then,
similarly as for Theorem 4.4, we obtain the following.

THEOREM 10.5. The 3ec-problem can be solved in O(m.a(m,n)) total time (where
m is the number of edge insertions and gueries), where the fth query can be performed
in O(a(f,n)) time. The structure can be initialized in O(n) time and takes O(n)
space.

By using the a-3EC structure where FRT5.. = o-FRT and FRT5.. = a-FRT
instead, the above theorem can be augmented to allow insertions of new nodes in the
graph with a time complexity of O(n + m.a(m,n)) (cf. section 9).

11. A solution for 2-vertex-connectivity. We consider the problem of main-
taining the 2-vertex-connected components in a graph, and we will present algorithms
with a time complexity of O(n+m.a(m,n)) for n nodes and m queries and insertions
using fractionally rooted trees. Similar to 2-edge-connectivity, we thus present a
solution that is different from that given in [32] but whose approach is closer to the
approach for maintaining the 3-vertex-connectivity relation in general graphs [24].

11.1. Graph observations. Let G = (V, E) be a graph. We define the graph
2v¢(G) as follows. For each 2vc-class or quasi class, there is a unique node related to
that class called the class node. The vertices of 2uc(G) are the nodes of G together
with these class nodes. For each node z, there is an edge between x and each class
node ¢ such that z is contained in 2vc-class ¢. (Thus we obtain a collection of trees

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1547

corresponding to so-called block trees.) Hence 2vc¢(G) is a forest, where each tree
in 2ve(G) corresponds to a connected component in GG. For the insertion of an edge
(e, z,y) in G, we have that all the classes of which the class node is on the tree path
P between x and y in 2v¢(G) form one new 2ve-class together (if P exists), while the
other 2vc-classes and quasi classes remain unchanged.

We represent 2vuc(G) by means of a spanning forest SF(G) of G. We augment
SF(G) with edge classes on its set of edges. An edge class contains all the edges that
connect two vertices that are in some 2vc-class or quasi class. An edge class consisting
of a cut edge of G is called a quasi edge class, and a real edge class otherwise. Hence, a
class of edges together with the end nodes of these edges induces a subtree in SF(G),
since for two 2-vertex-connected nodes = and y, all nodes on the tree path between
and y are 2-vertex-connected with them too. Also, two nodes r and y are 2-vertex-
connected iff & and y are incident with 2 edges of the same real edge class. We use
names of edge classes as the names of the corresponding 2ve-classes and quasi classes.
Note that if each edge (e,z,y) in SF(G) is replaced by two edges connecting class
node C with x and y, where C is the edge class containing (e, .r,y), then we obtain
2vc(G).

For the insertion of a new edge (e,z,y) € E in G, we now have the following. If
c(z) # c(y), then (e,z,y) connects two connected components, and it thus connects
two trees in SF(G). If —~Is2ve(x,y) A c(z) = ¢(y), then all edge classes occurring
on the tree path between z and y in SF(G) must be joined. Otherwise, we have
Is2vc(z,y) A e(z) = c(y), and the insertion of (e, x,y) will not affect the 2vc-relation.

11.2. Algorithms. We use a fractionally rooted tree structure F'RT on forest
SF(G), denoted by FRTy,.. All quasi edge classes are marked as being quasi. All
other classes are not marked. There is a Union-Find structure for connected compo-
nents denoted by UF,. The initialization for an empty graph is straightforward. A
query Is2vc(a,y) is performed by first performing a call candidates: then false is
returned if the returned edge-class names are distinct or correspond to a quasi edge
class, while true and the (common) edge-class name are returned otherwise. For the
insertion of a new edge (e,z,y) in G, we distinguish the two relevant cases.

1. c(z) # c(y). Then link((e,z,y)) is performed, and the two connected com-
ponents c(z) and c(y) are joined (in UF.).

2. ~Is2vc(x,y) Ac(z) = e(y). Then a boundary list BL for r and y in SF(G)
is obtained by boundary(x,y). If BL contains nodes x and y only. then x
and vy form a quasi class; then the edge class obtained in the call Is2ve(r,y)
is unmarked, reflecting that the edge class is real now. Otherwise, nodes
z and y are deleted from BL (their sublists contain one edge only), and
joinclasses(BL) is called.

A 2V C(%) structure is the above structure where F' RT5,. = FRT (i) and where
UF, = UF(3). Then we obtain the following result in a way similar to subsection 4.3.

THEOREM 11.1. A 2VC(i) structure solves the 2vc-problem such that the follow-
ing holds. The total time that is needed for all essential insertions is O(n.i.a(i,n)).
where a query and a nonessential insertion can be performed in O(i) time. The struc-
ture can be initialized in O(n) time and takes O(n) space (1 > 1, n 2 2).

Now take a-FRT as FRTs,. for a graph with n nodes, and take a-UF for UF..
Then we obtain the following result in a way similar to subsection 4, where now
Theorem 9.2 is used instead of Theorem 9.1.

THEOREM 11.2. The 2uvc-problem can be solved in O(m.a(m,n)) total time
(where m is the number of edge insertions and queries), where the fth query can

1548 HAN LA POUTRE

be performed in O(a(f.n)) time. The structure can be initialized in O(n) time and
takes O(n) space. . . .

The above theorem can be augmented to allow insertion of new nodes in the graph
with a time complexity of O(n +m.a(m.n)) (cf. section 9).

12. Concluding remarks. We have presented solutions for maintaining the 2-
edge and the 3-edge-connected components of graphs under insertion of edges and
vertices and for the 2-vertex-connected components. The solutions take O(fn, +
m.a(m.n)) time in total and are optimal on pointer machines and cell probe machines.
The optimality follows from the Q(n + m.a(m,n)) lower bound for k-edge/vertex-
connectivity (k > 1) in general graphs [32]. Also, for all practical problem sizes, there
is no need to perform transformations of FRT-structures; we recall that a(2,n) =
log™ n and refer to section 9. Therefore, we conjecture that FRT(2), 2EC(2), 3EC(2),
and 2VC(2) can be implemented as fast and easy structures in practical situations as
well, with constant-time queries.

We have also presented linear-time algorithms for maintaining 2-edge-connectivity
in a connected graph on a RAM. Since there is a nonlinear lower bound of Q(n +
m.afm,n)) for maintaining 2-vertez-connectivity in connected graphs on a RAM
(32]. this shows an interesting difference in computational complexity between 2-edge-
connectivity and 2-vertex-connectivity.

Finally, we remark that the problem of maintaining the 3-vertex-connected com-
ponents of general graphs can be solved with the optimal complexity of O(n +
m.a(m,n)) time for m insertions and queries. This generalizes the special-case re-
sult in [4] for maintaining the 3-vertex-connectivity relation inside 2-vertex-connected
graphs with such a time bound. We refer to [24].

REFERENCES

[1] G. AusieLLo, G. F. ITALIANO, A. M. SPACCAMELA, AND U. NANNI, Incremental algorithms for

minimal length paths, in Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1990, pp. 12-21.

[2] R.F. Conex anp R. Tamassia, Dynamic expression trees and their applications, in Proc. 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1991, pp. 52-61.

[3] G. D1 BarTisTA AND R. TAMASSIA, Incremental planarity testing, in Proc. 30th Annual Sym-

‘ posium on Foundations of Computer Science (FOCS), 1989, pp. 436-441.

[4] G. D1 BarTista aNDp R. TaMASSIA, On-line algorithms with SPQR-trees, in Proc. 17th Int.
Collog. on Automata, Languages, and Programming (ICALP), 1990, pp. 598-611.

[5] D. EPpSTEIN. Z. GALIL, G. F. ITALIANO, AND A. NISSENZWEIG, Sparsification—A technique for

oD speeding up dynamic graph algorithms, J. ACM, 44 (1997), pp. 669-696.

b

- EPPSTEIN, Z. GaLIL, G. F. ITALIANO, AND T. H. SPENCER, Separator based sparsification
for dynamic planar graph algorithms, in Proc. 25th Annual ACM Symposium on Theory
of Computing (STOC), 1993, pp. 208-217.

[7] D. EppsTEIN, G. F. ITALIANO, R. Tamassia, R. E. TarJaN, J. WESTBROOK, AND M. YUNG,
Maintenance of a minimum spanning forest in a dynamic planar graph, in Proc. 1st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1990, pp. 1-11.

[8] G. N. FREDERICKSON, Data structures for on-line updating of minimum, spanning trees, with
applications, SIAM J. Comput., 14 (1985), pp. 781-798.
9] G.N.F REDERICKSON, Ambivalent data structures for dynamic 2-edge-connectivity and k small-
) est spanning trees, SIAM J. Comput., 26 (1997), pp. 484-538.
[10] M. L. FREDMAN aND M. E. Saks, The cell-probe complezity of dynamic data structures, in

o I.Drof. 21st Annual ACM Symposium on Theory of Computing (STOC), 1989, pp. 345-354
[11] H. N. GaBow, 4 s@lmg algorithm for weighted matching on general graphs, in Proc. 26th
- {Xm:ual Symposium on Foundations of Computer Science (FOCS), 1985, pp. 90-100.
[12] H. "; ;;ABO_W. }f)uta ;tmitures for weighted matching and nearest common, ancestors with
tnking, in Proc. 1st Annual ACM-SIAM Sy i i i
1000, 0 ymposium on Discrete Algorithms (SODA),

[13]
[14]

[15]
(16]

(17]

(18]

(19]
[20]
(21]

[22]

[23]
(24]
(28]
(26]
(27]
(28]
(29]
(30]
[31]
(32]
(33]
34]

(35]

MAINTENANCE OF 2- AND 3-EDGE-CONNECTED COMPONENTS 1549

H. N. GaBow aND R. E. TARJAN, A linear time algorithm for a special case of disjoint set
union, J. Comput. System Sci., 30 (1985), pp. 209-221.

. GALIL AND G. F. ITALIANO, Maintaining the 3-edge-connected components of a graph on-line,
SIAM J. Comput., 22 (1993), pp. 11-28.

F. HARARY, Graph Theory, Addison-Wesley Publishing Company, Reading, MA, 1969.

G. F. ITALIANO, Amortized efficiency of a path retrieval data structure, Theoret. Comput. Sci.,

G

N

48 (1986), pp. 273-281.

. F. ITALIANO, Finding paths and deleting edges in directed acyclic graphs, Inform. Process.
Lett., 28 (1988), pp. 5-11.

. A. LA POUTRE AND J. VAN LEEUWEN, Maintenance of transitive closures and transitive
reductions of graphs, in Graph-Theoretic Concepts in Computer Science, H. Gdttler and
H. J. Schneider, eds., Lecture Notes in Comput. Sci. 314, Springer-Verlag, Berlin, 1987,
pp. 106-120.

J. A. LA POUTRE, New techniques for the union-find problem, in Proc. 1st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 1990, pp. 54-63.

J. A. La POUTRE, Lower bounds for the union-find and the split-find problem on pointer
machines, J. Comput. System Sci., 52 (1996), pp. 87-99.

J. A. La POUTRE, J. VAN LEEUWEN, AND M. H. OVERMARS, Maintenance of 2- and 3-edge-
connected components of graphs I, Discrete Math., 114 (1993), pp. 329-359.

J. A. LA POUTRE, Maintenance of 2- and 3-Connected Components of Graphs, Part 11: 2- and
3-Edge-Connected Components and 2- Vertez-Connected Components, Tech. report RUU-
CS-90-27, Utrecht University, The Netherlands, 1990.

J. A. LA PouTRrE, Dynamic Graph Algorithms and Data Structures, Ph.D. thesis, Utrecht
University, The Netherlands, 1991.

J.A. LA POUTRE, Maintenance of triconnected components of graphs, in Proc. 19th Interna-
tional Colloq. on Automata, Languages, and Programming (ICALP), 1992, pp. 354-365.

J. A. La POUTRE, Alpha-algorithms for incremental planarity testing, in Proc. 26th Annual
ACM Symposium on Theory of Computing (STOC), 1994, pp. 706-715.

K. MEHLHORN, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness,
EATCS Monograph Series, Springer-Verlag, Berlin, 1984.

F. P. PREPARATA AND R. TaMmassIA, Fully dynamic techniques for point location and transitive
closure in planar structures, in Proc. 29th Annual Symposium on Foundations of Computer
Science (FOCS), 1988, pp. 558-567.

M. H. RAUCH, Fully dynamic biconnectivity in graphs, Algorithmica, 13 (1995), pp. 503-538.

H. ROHNERT, A dynamization of the all pairs least cost path problem, in 2nd Annual Symposium
on Theoretical Aspects of Computer Science, K. Mehlhorn, ed., Lecture Notes in Comput.
Sci. 182, Springer-Verlag, Berlin, 1985, pp. 279-286.

R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput.
Mach., 22 (1975), pp. 215-225.

R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. Assoc.
Comput. Mach., 31 (1984), pp. 245-281.

J. WESTBROOK AND R. E. TARJAN, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433-464.

J. WESTBROOK, Fast incremental planarity testing, in Proc. 19th International Collog. on
Automata, Languages, and Programming (ICALP), 1992, pp. 342-353.

YE. DINITZ AND J. WESTBROOK, Maintaining the classes of y-edge-connectivity in a graph
on-line, Algorithmica, 20 (1998), pp. 242-276.

A. KANEVSKY, R. Tamassia, G. D1 BATTISTA, AND J. CHEN, On-line maintenance of the
four-connected components of a graph, in Proc. 32nd Annual Symp. on Foundations of
Computer Science (FOCS), 1991, pp. 793-801.

o~

